SVM-based Target Recognition from Synthetic Aperture Radar Images using Target Region Outline Descriptors
نویسنده
چکیده
The work in this paper explores the discriminatory power of target outline description features in conjunction with Support Vector Machine (SVM) based classification committees, when attempting to recognize a variety of targets from Synthetic Aperture Radar (SAR) images. In specific, approximate target outlines are first determined from SAR images via a simple mathematical morphology-based segmentation approach that discriminates target from radar shadow and ground clutter. Next, the obtained outlines are expressed as truncated Elliptical Fourier Series (EFS) expansions, whose coefficients are utilized as discriminatory features and processed by an ensemble of SVM classifiers. In order to experimentally illustrate the merit of the proposed scheme, this work reports classification results on a 3-class target recognition problem using SAR intensity imagery from the well-known Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset. The novel approach was compared to a selected methods mentioned in the literature in terms of classification accuracy. The results illustrate that only a small amount of EFS coefficients is necessary to achieve recognition rates that rival other established methods and, thus, target outline information can be a powerful discriminatory feature for automatic target recognition applications relevant to SAR imagery.
منابع مشابه
Target Discrimination Based on Zernike Moments in High-Resolution SAR Imagery
Target discrimination is the key step of automatic target detection (ATR) in synthetic aperture radar (SAR) images. In this paper, a new algorithm for target discrimination in high resolution SAR image is presented by utilizing Zernike moments as descriptors of shape and intensity characteristics which have linear transformation invariance properties. The input regions of interest (ROIs) are se...
متن کاملMicrowave Imaging Using SAR
Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...
متن کاملAutomatic Target Recognition of SAR Images Using Radial Features and SVM
The armed forces use a variety of sensor information to locate and target enemy forces. Because of the large area and sparse population, the surveillance becomes a difficult problem. With technological advances, the armed forces can rely upon different types of image data like, infrared data, and radar data. Due to the enormous amount of data, it becomes very difficult to analyse the data witho...
متن کاملA new algorithm of SAR target recognition based on advance deep learning neural network
In order to improve the accuracy of synthetic aperture radar images target recognition, we have proposed a new algorithm of SAR target recognition based on advance Deep Learning neural network. The traditional radar recognition algorithm has many disadvantages, In order to improve the accuracy of synthetic aperture radar images target recognition, the author have proposed a new algorithm of SAR...
متن کاملFusion Fourier Descriptors from the E-M, K-Means and Fisher Algorithms for Radar Target Recognition
The target recognition from Radar images was a crucial step in our research. This paper presents a process and an adopted approach for Automatic Target recognition using Inverse Synthetic Aperture Radar (ISAR) image. Indeed, the process adopted is composed of three steps. In the first step, we achieve the edge detection using of three techniques: Fisher, Kmeans and Expectation-Maximization (E-M...
متن کامل